A G AGH UNIVERSITY OF SCIENCE AND APPLIED COMPUTER SCIENCE
AND TECHNOLOGY

FunRootAna

T. Bold - AGH UST, Krakow, Poland

Why FP?

Features of FP

Typical applications

C++

FunRootAna for plain ntuple and xAOD analyses

Want more?

A bit of history

* |In functional programming the focus is on telling the computer what to
do rather than how to do it

 FP is rooted in mathematical Category Theory - solid foundations

* Then the hardware guys came up with model closer to the hardware -
Imperative programming

* Here you concentrate more on telling the computer of how to do the
computation

What do we write in FP?

Functions

e pure - w/o the side effects

e total - always produce the result

* higher order, partially applied, recursive ...

Functional classes

 no modifiable state

The profit is: a line of code does all (and only) what it says - referential transparency

 Reading, understanding & maintaining such codebase Is just simpler, especially
INn large systems

The functional code is typically more compact - good - who likes to type!

Ap p I i C at i O n S Probably the nicest example:

Apache Spark

* Virtually everywhere but ..

* Big data through map-filter-reduce paradigm

Each arrow is a
l ' l | function!

All of them can
execute in parallel

input

Your result!

In fact very similar
to what we do:
Ourresultis a

histogram

C++

Multi-paradigm also means functional

Higher orders were there since long time (i.e. std::copy_if)

First steps towards making c++ more explicit FP were made in std11 (lambdas)
 Maybe one day shorter syntax will be available?

std20 introduced ranges (half of the functionality, map(transform) & filter are there) - the
reduce in std23

the std::option become full fledged “maybe” Monad in std23
std::option(x)

.and_then([J(auto x){ return f(x); })

.and_then([J(auto x){ return g(x); }) ...

FunRootAna

https://tboldagh.github.io/FunRootAna/

* An exercise: see how far one can go with functional approach (not orthodox though) to the analysis
of plain ROOT Tree and/or ATLAS xAOD

 Did not care to match the c++ standards etc. just wanted to end up with most compact FP
code to do the job

* Did not taken care of optimisations, just tried not to do obviously bad things (e.g. runtime
polymorphism)

 And the job was to take the data-> map-filter-reduce -> histograms
* 3 ingredients:
* a straightforward FP TTree interface,
* functional lazy view FP container with a complete map-filter-reduce functionality,
* streamlined histograms handling, +small utilities

 (Can be compiled as ATLAS library or standalone ntuple analysis

https://tboldagh.github.io/FunRootAna/

Elements of FunRootAna:
T TreeAccess

 [[ree access class
streamline the single branch access, via: get<type>(name)

allow for combining branches into a custom class (i.e. TLorentzVector)
streamline iteration over events

// a simple loop

/ftfor (PointsTreeAccess event(t); event; ++event)

// or via functional collection interface

TreeView<PointsTreeAccess> events(t); // the tree wrapped in an functional container

events
take(2000) // take only first 2000 events

filter([&](auto event){ return event.current() %2 == 1; }) // every second event (because why not)
foreach([&](auto event) {

// ... event processing

Elements of FunRootAna:
Functional container

* Functionalinterface
provides numerous methods (~20) to map-filter-reduce the data in containers

#define rtrk(CODE) [&](const TrackInfo &) { return CODE; }

auto loose_tracksVec = lazy view(event.getTrackInfo())
.filter(_rtrk(_.pt < 5.0 & _.pt > 0.3 && std::fabs(_.eta) < 2.5)).stage();

auto loose_tracks = lazy view(loose tracksVec);

auto tight_tracks = loose_tracks.filter(_rtrk(_.qual == TrackInfo::Tight));

const double Nch = tight_tracks.map(rtrk(_.weight)).sum();

A very compact syntax to transformations.

Elements of FunRootAna:
LAZY functional container

* The transformations in fact do nothing until some of the reduction step is
not involved.

auto data = container.filter(F(C std::norm(_) < 1))
filter(F(_.x>5))
.take(10)
.sort(F(_.x))

No data transformation occurred

here!

.reverse()

.map(F(_.y))
filter(F(>0));

auto total = data.sum();

10

Elements Of FunROOtAna: max = std::numeric_limits< >::min();

(el: datal) {
Terse syntax o - o1
.
* Rich APl and FP approach e e e
allow expressing complex , max = el
operations in a very }
compact & readable way o 100

¥

max = ;
max_ell = std::max_element(std: :begin(datal), std::end(datal));
(max_ell '= std::end(datal))
max = *max_ell;
max_elZ2 = std::max_element(std: :begin(data2), std::end(data2));
(max_ell !'= std::end(data’2) && *max_elZ2 > *max_ell)
max = *max_el;

e Also available: rand/
arithmetic/geometric

streams, ranges, iota, -ChalnC :) |
stager, inserters. .max().get().value_or();

11

Elements of FunRootAna:
compact histograms handling

* We need to declare, book, fill and save histograms
 That is 4 places! Typically in two files (.h and .cxx)
 Helper class + set of macros streamline this in FunRootAna to a single line
e placed directly in the loop over events
« HIST1, HIST2, EFF, PROF macros to create, book, register and expose to fill operation in one go

» set of >> operators to unify filling from PODs and lazy containers

category = ..
category >> HIST1(: , 5, - :);
x = fly::lazy_view(data); // data here 1s plain std::vector<float>

X >> HIST1(C : : , 0,);

).

x >> HISTI1(: ;
)) >> HIST1(

X.f1lter(F(category==0 && std::fabs(_) <
x.map(F(1l./std::sqgrt(_))) >> HIST1(:

12

Summary

An FP approach to data analysis in ROOT is quite neat
Typical for FP, safety, terseness, expressiveness are within the reach

Using FunRootAna makes you to write quite a minimal amount of code
(and concentrate on the essence)

Tried in smaller and larger analyses of ATLAS data.

The future”? Up to you mostly :-).
In few years the ROOT system will need to cooperate with c++ ranges
anyway - some form of similar interface will be necessary.

Got interested?

https://tboldagh.github.io/FunRootAna/

FunRootAna
Library for Functional analysis in CERN ROQO/1

FunRootAna

This is a basic framework allowing to do ROOT analysis in a more functional way. In comparison to RDFrame it

offers more functional feel for the data analysis. In particular collections processing is inspired by Apache Spark
and the histograms creation and filling is much simplified. As consequence, a single line containing selection,
data extraction & histogram definition is sufficient to obtain one unit of result (that is, one histogram).

The promise Is:
With FunRootAna the number of lines of code per histogram is converging to 1.

Let's see how.

14

https://tboldagh.github.io/FunRootAna/

